Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Genet ; 13: 1073880, 2022.
Article in English | MEDLINE | ID: covidwho-2268773

ABSTRACT

The COVID-19 pandemic has resulted in great morbidity and mortality worldwide and human genetic factors have been implicated in the susceptibility and severity of COVID-19. However, few replicate researches have been performed, and studies on associated genes mainly focused on genic regions while regulatory regions were a lack of in-depth dissection. Here, based on previously reported associated variants and genes, we designed a capture panel covering 1,238 candidate variants and 25 regulatory regions of 19 candidate genes and targeted-sequenced 96 mild and 145 severe COVID-19 patients. Genetic association analysis was conducted between mild and severe COVID-19 patients, between all COVID-19 patients and general population, or between severe COVID-19 patients and general population. A total of 49 variants were confirmed to be associated with susceptibility or severity of COVID-19 (p < 0.05), corresponding to 18 independent loci. Specifically, rs1799964 in the promoter of inflammation-related gene TNF, rs9975538 in the intron of interferon receptor gene IFNAR2, rs429358 in the exon of APOE, rs1886814 in the intron of FOXP4-AS1 and a list of variants in the widely reported 3p21.31 and ABO gene were confirmed. It is worth noting that, for the confirmed variants, the phenotypes of the cases and controls were highly consistent between our study and previous reports, and the confirmed variants identified between mild and severe patients were quite different from those identified between patients and general population, suggesting the genetic basis of susceptibility and severity of SARS-CoV-2 infection might be quite different. Moreover, we newly identified 67 significant associated variants in the 12 regulatory regions of 11 candidate genes (p < 0.05). Further annotation by RegulomeDB database and GTEx eQTL data filtered out two variants (rs11246060 and rs28655829) in the enhancer of broad-spectrum antiviral gene IFITM3 that might affect disease severity by regulating the gene expression. Collectively, we confirmed a list of previously reported variants and identified novel regulatory variants associated with susceptibility and severity of COVID-19, which might provide biological and clinical insights into COVID-19 pathogenesis and treatment.

2.
Cell Rep ; 42(3): 112189, 2023 03 28.
Article in English | MEDLINE | ID: covidwho-2240749

ABSTRACT

Cognitive dysfunction is often reported in patients with post-coronavirus disease 2019 (COVID-19) syndrome, but its underlying mechanisms are not completely understood. Evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein or its fragments are released from cells during infection, reaching different tissues, including the CNS, irrespective of the presence of the viral RNA. Here, we demonstrate that brain infusion of Spike protein in mice has a late impact on cognitive function, recapitulating post-COVID-19 syndrome. We also show that neuroinflammation and hippocampal microgliosis mediate Spike-induced memory dysfunction via complement-dependent engulfment of synapses. Genetic or pharmacological blockage of Toll-like receptor 4 (TLR4) signaling protects animals against synapse elimination and memory dysfunction induced by Spike brain infusion. Accordingly, in a cohort of 86 patients who recovered from mild COVID-19, the genotype GG TLR4-2604G>A (rs10759931) is associated with poor cognitive outcome. These results identify TLR4 as a key target to investigate the long-term cognitive dysfunction after COVID-19 infection in humans and rodents.


Subject(s)
COVID-19 , Cognitive Dysfunction , Humans , Animals , Mice , COVID-19/complications , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2/metabolism , Toll-Like Receptor 4 , Post-Acute COVID-19 Syndrome
3.
Genes (Basel) ; 14(1)2023 Jan 14.
Article in English | MEDLINE | ID: covidwho-2199965

ABSTRACT

Vitamin D requires activation to show its pharmacological effect. While most studies investigate the association between vitamin D and disease, only a few focus on the impact of vitamin D metabolism gene polymorphisms (vitDMGPs). This bibliometric study aims to provide an overview of current publications on vitDMGPs (CYP27B1, CYP24A1, CYP2R1, CYP27A1, CYP2R1, DHCR7/NADSYN1), compare them across countries, affiliations, and journals, and inspect keywords, co-citations, and citation bursts to identify trends in this research field. CiteSpace© (version 6.1.R3, Chaomei Chen), Bibliometrix© (R version 4.1.3 library, K-Synth Srl, University of Naples Federico II, Naples, Italy), VOSviewer© (version 1.6.1, Nees Jan van Eck and Ludo Waltman, Leiden University, Leiden, Netherlands) and Microsoft® Excel 365 (Microsoft, Redmond, Washington, USA) classified and summarized Web of Science articles from 1998 to November 2022. We analyzed 2496 articles and built a timeline of co-citations and a bibliometric keywords co-occurrence map. The annual growth rate of vitDMGPs publications was 18.68%, and their relative research interest and published papers were increasing. The United States of America leads vitDMGPs research. The University of California System attained the highest quality of vitDMGPs research, followed by the American National Institutes of Health and Harvard University. The three productive journals on vitDMGPs papers are J. Steroid. Biochem. Mol. Biol., PLOS ONE, and J. Clin. Endocrinol. Metab. We highlighted that the vitDMGPs domain is relatively new, and many novel research opportunities are available, especially those related to studying single nucleotide polymorphisms or markers in a specific gene in the vitamin D metabolism cycle and their association with disease. Genome-wide association studies, genetic variants of vitDMGPs, and vitamin D and its role in cancer risk were the most popular studies. CYP24A1 and CYB27A1 were the most-studied genes in vitDMGPs. Insulin was the longest-trending studied hormone associated with vitDMGPs. Trending topics in this field relate to bile acid metabolism, transcriptome and gene expression, biomarkers, single nucleotide polymorphism, and fibroblast growth factor 23. We also expect an increase in original research papers investigating the association between vitDMGPs and coronavirus disease 2019, hypercalcemia, Smith-Lemli-Opitz syndrome, 27-hydroxycholesterol, and mendelian randomization. These findings will provide the foundations for innovations in the diagnosis and treatment of a vast spectrum of conditions.


Subject(s)
COVID-19 , Genome-Wide Association Study , Humans , Vitamin D3 24-Hydroxylase , Polymorphism, Single Nucleotide/genetics , Vitamin D/genetics , Vitamins , Bibliometrics
4.
J Pers Med ; 12(4)2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1776271

ABSTRACT

Genetic factors associated with COVID-19 disease outcomes are poorly understood. This study aimed to associate genetic variants in the SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, XCR1, and ABO genes with the risk of severe forms of COVID-19 in Amazonian Native Americans, and to compare the frequencies with continental populations. The study population was composed of 64 Amerindians from the Amazon region of northern Brazil. The difference in frequencies between the populations was analyzed using Fisher's exact test, and the results were significant when p ≤ 0.05. We investigated 64 polymorphisms in 7 genes; we studied 47 genetic variants that were new or had impact predictions of high, moderate, or modifier. We identified 15 polymorphisms with moderate impact prediction in 4 genes (ABO, CXCR6, FYCO1, and SLC6A20). Among the variants analyzed, 18 showed significant differences in allele frequency in the NAM population when compared to others. We reported two new genetic variants with modifier impact in the Amazonian population that could be studied to validate the possible associations with COVID-19 outcomes. The genomic profile of Amazonian Native Americans may be associated with protection from severe forms of COVID-19. This work provides genomic data that may help forthcoming studies to improve COVID-19 outcomes.

5.
Biomedicines ; 10(3)2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1760350

ABSTRACT

The aim of this study was to identify single nucleotide variants in genes associated with susceptibility to or severe outcomes of COVID-19. A total of 319 genomic DNA samples from patients with varying degrees of disease severity and 78 control DNA samples from people who had regular or prolonged contact with patients with COVID-19 but did not have clinical manifestations and/or antibodies to SARS-CoV-2. Seven SNPs were identified that were statistically associated with disease risk or severe course, rs1799864 in the CCR2 gene (OR = 2.21), rs1990760 in the IFIH1 gene (OR = 2.41), rs1800629 in the TNF gene (OR = 1.98), rs75603675 in the TMPRSS2 gene (OR = 1.86), rs7842 in the C3AR1 gene (OR = 2.08), rs179008 in the gene TLR7 (OR = 1.85), rs324011 in the C3AR1 gene (OR = 2.08), rs179008 in the TLR7 gene (OR = 1.85), and rs324011 in the STAT6 gene (OR = 1.84), as well as two variants associated with protection from COVID-19, rs744166 in the STAT3 gene (OR = 0.36) and rs1898830 in the TLR2 gene (OR = 0.47). The genotype in the region of these markers can be the criterion of the therapeutic approach for patients with COVID-19.

7.
Int J Biol Sci ; 17(6): 1476-1485, 2021.
Article in English | MEDLINE | ID: covidwho-1206431

ABSTRACT

The pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is far from being controlled despite the great effort that have been taken throughout the world. Herd immunity through vaccination is our major expectation to rein the virus. However, the emergence of widespread genetic variants could potentially undermine the vaccines. The evidence that some variants could evade immune responses elicited by vaccines and previous infection is growing. In this review, we summarized the current understanding on five notable genetic variants, i.e., D614G, Cluster 5, VOC 202012/01, 501Y.V2 and P.1, and discussed the potential impact of these variants on the virus transmission, pathogenesis and vaccine efficacy. We also highlight that mutations in the N-terminal domain of spike protein should be considered when evaluating the antibody neutralization abilities. Among these genetic variants, a concern of genetic variant 501Y.V2 to escape the protection by vaccines was raised. We therefore call for new vaccines targeting this variant to be developed.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Mutation , Pandemics/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Genes, Viral , Humans , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/physiology
8.
Dev Growth Differ ; 63(3): 219-227, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1088005

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a pandemic as of early 2020. Upon infection, SARS-CoV-2 attaches to its receptor, that is, angiotensin-converting enzyme 2 (ACE2), on the surface of host cells and is then internalized into host cells via enzymatic machineries. This subsequently stimulates immune response factors. Since the host immune response and severity of COVID-19 vary among individuals, genetic risk factors for severe COVID-19 cases have been investigated. Our research group recently conducted a survey of genetic variants among SARS-CoV-2-interacting molecules across populations, noting near absence of difference in allele frequency spectrum between populations in these genes. Recent genome-wide association studies have identified genetic risk factors for severe COVID-19 cases in a segment of chromosome 3 that involves six genes encoding three immune-regulatory chemokine receptors and another three molecules. The risk haplotype seemed to be inherited from Neanderthals, suggesting genetic adaptation against pathogens in modern human evolution. Therefore, SARS-CoV-2 uses highly conserved molecules as its virion interaction, whereas its immune response appears to be genetically biased in individuals to some extent. We herein review the molecular process of SARS-CoV-2 infection as well as our further survey of genetic variants of its related immune effectors. We also discuss aspects of modern human evolution.


Subject(s)
Adaptive Immunity , COVID-19 , Evolution, Molecular , Genetic Variation , Host-Pathogen Interactions , SARS-CoV-2/genetics , Adaptive Immunity/genetics , Adaptive Immunity/immunology , Animals , COVID-19/epidemiology , COVID-19/genetics , COVID-19/immunology , Conserved Sequence , Genome-Wide Association Study , Host Adaptation/genetics , Host Adaptation/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Pandemics , SARS-CoV-2/immunology , Sequence Analysis, RNA
9.
Emerg Microbes Infect ; 9(1): 2488-2496, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-900319

ABSTRACT

Genomic surveillance of SARS-CoV-2 was rapidly implemented in Portugal by the National Institute of Health in collaboration with a nationwide consortium of >50 hospitals/laboratories. Here, we track the geotemporal spread of a SARS-CoV-2 variant with a mutation (D839Y) in a potential host-interacting region involving the Spike fusion peptide, which is a target motif of anti-viral drugs that plays a key role in SARS-CoV-2 infectivity. The Spike Y839 variant was most likely imported from Italy in mid-late February and massively disseminated in Portugal during the early epidemic, becoming prevalent in the Northern and Central regions of Portugal where it represented 22% and 59% of the sampled genomes, respectively, by 30 April. Based on our high sequencing sampling during the early epidemics [15.5% (1275/8251) and 6.0% (1500/24987) of all confirmed cases until the end of March and April, respectively], we estimate that, between 14 March and 9 April (covering the epidemic exponential phase) the relative frequency of the Spike Y839 variant increased at a rate of 12.1% (6.1%-18.2%, CI 95%) every three days, being potentially associated with 24.8% (20.8-29.7%, CI 95%; 3177-4542 cases, CI 95%) of all COVID-19 cases in Portugal during this period. Our data supports population/epidemiological (founder) effects contributing to the Y839 variant superspread. The potential existence of selective advantage is also discussed, although experimental validation is required. Despite huge differences in genome sampling worldwide, SARS-CoV-2 Spike D839Y has been detected in 13 countries in four continents, supporting the need for close surveillance and functional assays of Spike variants.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Genome, Viral , Mutation , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/diagnosis , COVID-19/virology , Epidemiological Monitoring , Genomics , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , Portugal/epidemiology , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Severity of Illness Index
10.
Nutrients ; 12(9)2020 Sep 08.
Article in English | MEDLINE | ID: covidwho-760945

ABSTRACT

The pandemic caused by the new coronavirus has caused shock waves in many countries, producing a global health crisis worldwide. Lack of knowledge of the biological mechanisms of viruses, plus the absence of effective treatments against the disease (COVID-19) and/or vaccines have pulled factors that can compromise the proper functioning of the immune system to fight against infectious diseases into the spotlight. The optimal status of specific nutrients is considered crucial to keeping immune components within their normal activity, helping to avoid and overcome infections. Specifically, the European Food Safety Authority (EFSA) evaluated and deems six vitamins (D, A, C, Folate, B6, B12) and four minerals (zinc, iron, copper and selenium) to be essential for the normal functioning of the immune system, due to the scientific evidence collected so far. In this report, an update on the evidence of the contribution of nutritional factors as immune-enhancing aspects, factors that could reduce their bioavailability, and the role of the optimal status of these nutrients within the COVID-19 pandemic context was carried out. First, a non-systematic review of the current state of knowledge regarding the impact of an optimal nutritional status of these nutrients on the proper functioning of the immune system as well as their potential role in COVID-19 prevention/treatment was carried out by searching for available scientific evidence in PubMed and LitCovid databases. Second, a compilation from published sources and an analysis of nutritional data from 10 European countries was performed, and the relationship between country nutritional status and epidemiological COVID-19 data (available in the Worldometers database) was evaluated following an ecological study design. Furthermore, the potential effect of genetics was considered through the selection of genetic variants previously identified in Genome-Wide Association studies (GWAs) as influencing the nutritional status of these 10 considered nutrients. Therefore, access to genetic information in accessible databases (1000genomes, by Ensembl) of individuals from European populations enabled an approximation that countries might present a greater risk of suboptimal status of the nutrients studied. Results from the review approach show the importance of maintaining a correct nutritional status of these 10 nutrients analyzed for the health of the immune system, highlighting the importance of Vitamin D and iron in the context of COVID-19. Besides, the ecological study demonstrates that intake levels of relevant micronutrients-especially Vitamins D, C, B12, and iron-are inversely associated with higher COVID-19 incidence and/or mortality, particularly in populations genetically predisposed to show lower micronutrient status. In conclusion, nutrigenetic data provided by joint assessment of 10 essential nutrients for the functioning of the immune system and of the genetic factors that can limit their bioavailability can be a fundamental tool to help strengthen the immune system of individuals and prepare populations to fight against infectious diseases such as COVID-19.


Subject(s)
Coronavirus Infections , Nutrigenomics , Nutritional Status , Pandemics , Pneumonia, Viral , Adolescent , Adult , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Female , Genome-Wide Association Study , Humans , Male , Metals, Heavy/blood , Middle Aged , Nutritional Status/genetics , Nutritional Status/immunology , Nutritional Status/physiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , SARS-CoV-2 , Selenium/blood , Vitamins/blood , Young Adult
11.
Infect Genet Evol ; 85: 104507, 2020 11.
Article in English | MEDLINE | ID: covidwho-731865

ABSTRACT

The COVID-19 pandemic highlighted healthcare disparities in multiple countries. As such morbidity and mortality vary significantly around the globe between populations and ethnic groups. Underlying medical conditions and environmental factors contribute higher incidence in some populations and a genetic predisposition may play a role for severe cases with respiratory failure. Here we investigated whether genetic variation in the key genes for viral entry to host cells-ACE2 and TMPRSS2-and sensing of viral genomic RNAs (i.e., TLR3/7/8) could explain the variation in incidence across diverse ethnic groups. Overall, these genes are under strong selection pressure and have very few nonsynonymous variants in all populations. Genetic determinant for the binding affinity between SARS-CoV-2 and ACE2 does not show significant difference between populations. Non-genetic factors are likely to contribute differential population characteristics affected by COVID-19. Nonetheless, a systematic mutagenesis study on the receptor binding domain of ACE2 is required to understand the difference in host-viral interaction across populations.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Toll-Like Receptors/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , Humans , Mutagenesis, Site-Directed , Protein Binding , Protein Domains , Selection, Genetic , Serine Endopeptidases/metabolism , Toll-Like Receptor 3/chemistry , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 7/chemistry , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/chemistry , Toll-Like Receptor 8/genetics , Toll-Like Receptor 8/metabolism , Toll-Like Receptors/chemistry , Toll-Like Receptors/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL